Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

12,12'-[2,2'-Oxybis(ethane-2,1-diyl)bis-(oxy)]bis[(*R*_p)-4-bromo[2.2]paracyclophane]

Bing Hong, Yudao Ma,* Wenzeng Duan, Fuyan He and Lei Zhao

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China Correspondence e-mail: ydma@sdu.edu.cn

Received 5 March 2011; accepted 17 March 2011

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.005 Å; R factor = 0.030; wR factor = 0.068; data-to-parameter ratio = 11.7.

The title compound, $C_{36}H_{36}Br_2O_3$, was synthesized from (R_p) -4-bromo-12-hydroxy[2.2]paracyclophane and oxydiethane-2,1-diyl bis(4-methylbenzenesulfonate). The crystal packing exhibits a short $O \cdots Br$ interaction $[Br \cdots O = 3.185 (3) \text{ Å}]$ and a weak intermolecular $C - H \cdots O$ contact.

Related literature

The title compound is an important intermediate in the application of paracyclophanes, especially used as ligands in asymmetric catalysis. For the structure of [2.2]paracyclophane, see: Singer & Cram (1963); Gibson & Knight (2003); Rivera *et al.* (2011). For bis(diphenylphosphino)-[2.2]paracyclophane, see: Pye *et al.* (1997). For the application of salen ligands based on [2.2]paracyclophane as asymmetic ligands, see: Dahmen & Bräse (2002); Bräse & Höfener (2005); Lauterwasser *et al.* (2006). For the synthesis of (R_p)-4-bromo-12-hydroxy[2.2]-paracyclophane, see: Jiang & Zhao (2004).

Experimental

Crystal data C₃₆H₃₆Br₂O₃

 $M_r = 676.47$

Orthorhombic, $P2_12_12_1$ a = 8.850 (4) Å b = 12.019 (5) Å c = 28.242 (12) Å V = 3004 (2) Å³

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min} = 0.718, \ T_{\max} = 0.772$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.068$ S = 1.024331 reflections 370 parameters H-atom parameters constrained Z = 4Mo K\alpha radiation $\mu = 2.73 \text{ mm}^{-1}$ T = 273 K $0.13 \times 0.12 \times 0.10 \text{ mm}$

12887 measured reflections 4331 independent reflections 3692 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$ $\theta_{\text{max}} = 23.3^{\circ}$

 $\begin{array}{l} \Delta\rho_{\rm max}=0.39~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.35~{\rm e}~{\rm \AA}^{-3}\\ {\rm Absolute~structure:~Flack~(1983),}\\ 1839~{\rm Friedel~pairs}\\ {\rm Flack~parameter:~0.008~(8)} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C17-H17A\cdots O2^{i}$	0.97	2.71	3.412 (5)	130
Symmetry code: (i) r –	1 v z			

Symmetry code: (i) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Financial support from the National Natural Science Foundation of China (grant No. 20671059) and the Department of Science and Technology of Shandong Province is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2003).

References

Bräse, S. & Höfener, S. (2005). Angew. Chem. Int. Ed. 44, 7879-7881.

- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dahmen, S. & Bräse, S. (2002). J. Am. Chem. Soc. 124, 5940-5941.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gibson, S. E. & Knight, J. D. (2003). Org. Biomol. Chem. 1, 1256–1259.
- Jiang, B. & Zhao, X.-L. (2004). Tetrahedron Asymmetry, 15, 1141–1143.
- Lauterwasser, F., Gall, J., Höfener, S. & Bräse, S. (2006). *Adv. Synth. Catal.* **348**, 2068–2074.
- Pye, P. J., Rossen, K., Reamer, R. A., Tsou, N. N., Volante, R. P. & Reider, P. J. (1997). J. Am. Chem. Soc. 119, 6207–6208.
- Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, 0753.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singer, L. A. & Cram, D. J. (1963). J. Am. Chem. Soc. 85, 1080-1084.

Acta Cryst. (2011). E67, o950 [doi:10.1107/S1600536811010051]

12,12'-[2,2'-Oxybis(ethane-2,1-diyl)bis(oxy)]bis[(R_p)-4-bromo[2.2]paracyclophane]

B. Hong, Y. Ma, W. Duan, F. He and L. Zhao

Comment

The chemistry of [2.2]paracyclophane gathered great attention since the middle of last century (Singer & Cram, 1963). When the position on the aryl group of paracyclophane was substitued, [2.2]paracyclophane presented planar chirality due to its conformationally rigid structure. After 4,12-bis(diphenylphosphino)-[2.2]paracyclophane was synthesized and applied in aymmetric hydrogenation (Pye *et al.*, 1997), the application of salen ligands based on [2.2]paracyclophane in asymmetric addition reations on aldehydes was exploited (Dahmen & Bräse, 2002; Bräse & Höfener, 2005; Lauterwasser *et al.*, 2006).

In the title compound (Fig. 1), the C—Br bond lengths are 1.903 (4) Å and 1.905 (3) Å, respectively, which are in agreement with the C—Br bond length of 1.9080 (16) Å reported by Rivera *et al.* (2011) for a 4-bromophenol derivative. The C(15)—O(1) bond [1.385 (4) Å] and the C(22)—O(3) bond [1.374 (4) Å] are longer than the similar C(ph)—O bond [1.353 (2) Å] of Rivera *et al.* (2011), which is due to the weaker p— π conjugation in our [2.2]paracyclophane backbone. The intermolecular C—H···O and O···Br contacts link the molecules into a polymeric tape structure (Fig. 2).

Experimental

 (R_p) -4-bromo-12-hydroxy[2.2]paracyclophane (0.152 g, 0.50 mmol), which was prepared according to the published procedure (Jiang *et al.*, 2004), was dissolved in 5.0 ml DMF in a flask. Then oxydiethane-2,1-diyl bis(4-methylbenzenesulfonate) (0.108 g, 0.26 mmol) and K₂CO₃ (0.208 g, 1.50 mmol) were added. The flask was incubated at 353 K in oil bath for 8 h. After reaction, the reaction solution was filtered, then 20 ml water was added and the product was extracted with 10 ml CH₂Cl₂ (three times) and the organic phase was washed with 5 ml water (also three times). The CH₂Cl₂ was vacuum distilled and the crude product was subjected to column chromatography on silica gel. The yield of pure product was 0.106 g (68%) as a white solid. The colourless crystals suitable for an X-ray diffraction experiment were obtained by slow diffusion of *n*-hexane into a solution of the product in CH₂Cl₂.

Refinement

All the H atoms were located in difference maps; H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.93 (aromatic) and 0.97 (aliphatic) Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I) showing the atom numbering scheme and 50% probabilty displacement ellipsoids. H atoms are omitted for clarity.

Fig. 2. The superomolecular structure of (I), showing the intermolecular O…Br interaction and the weak C-H…O interaction.

12,12'-[2,2'-Oxybis(ethane-2,1-diyl)bis(oxy)]bis[(R_p)- 4-bromo[2.2]paracyclophane]

Crystal data

C ₃₆ H ₃₆ Br ₂ O ₃
$M_r = 676.47$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
a = 8.850 (4) Å
<i>b</i> = 12.019 (5) Å
<i>c</i> = 28.242 (12) Å
$V = 3004 (2) \text{ Å}^3$
Z = 4

Data collection

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.068$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0252P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{max} < 0.001$
4331 reflections	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
370 parameters	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 1839 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.008 (8)

F(000) = 1384 $D_x = 1.496 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 4449 reflections $\theta = 1.8-23.3^{\circ}$ $\mu = 2.73 \text{ mm}^{-1}$ T = 273 KBlock, colourless $0.13 \times 0.12 \times 0.10 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C36	0.8319 (4)	0.9667 (3)	0.15546 (12)	0.0480 (10)
C37	0.7036 (5)	0.9418 (3)	0.12979 (13)	0.0504 (9)
H37	0.6686	0.8689	0.1285	0.060*
Br1	0.30618 (5)	0.68396 (4)	0.081628 (14)	0.06634 (15)
Br2	0.94686 (6)	0.84669 (4)	0.180636 (15)	0.07790 (17)
03	0.8123 (3)	0.85002 (19)	0.03021 (8)	0.0485 (6)
02	0.8426 (3)	0.56317 (18)	0.05928 (8)	0.0462 (6)
01	0.6407 (3)	0.4291 (2)	0.11810 (8)	0.0476 (6)
C20	0.7812 (4)	0.6565 (3)	0.03631 (12)	0.0462 (9)
H20A	0.6803	0.6718	0.0480	0.055*
H20B	0.7758	0.6439	0.0024	0.055*
C32	0.7909 (5)	1.1572 (3)	0.14345 (13)	0.0608 (11)
H32	0.8128	1.2307	0.1511	0.073*
C1	0.3373 (4)	0.6550 (3)	0.14721 (12)	0.0445 (9)
C22	0.8814 (4)	0.9506 (3)	0.03838 (12)	0.0409 (9)
C19	0.7751 (4)	0.4601 (3)	0.04702 (14)	0.0482 (9)
H19A	0.8415	0.4003	0.0571	0.058*
H19B	0.7664	0.4560	0.0128	0.058*
C21	0.8846 (4)	0.7518 (3)	0.04703 (13)	0.0446 (9)
H21A	0.9023	0.7570	0.0809	0.054*
H21B	0.9810	0.7415	0.0313	0.054*
C5	0.2497 (5)	0.6113 (3)	0.22280 (14)	0.0529 (10)
Н5	0.1702	0.6053	0.2442	0.064*
C6	0.2185 (4)	0.6201 (3)	0.17485 (13)	0.0431 (9)
C13	0.2424 (4)	0.3949 (3)	0.15319 (14)	0.0470 (10)
C27	0.7969 (5)	1.0433 (3)	0.02457 (12)	0.0493 (10)
C33	0.8887 (4)	1.0734 (3)	0.15801 (12)	0.0520 (10)
C14	0.3689 (4)	0.4055 (3)	0.12492 (13)	0.0437 (9)
H14	0.3573	0.4127	0.0923	0.052*
C15	0.5121 (4)	0.4056 (2)	0.14417 (12)	0.0377 (8)
C3	0.5171 (4)	0.6198 (3)	0.20919 (14)	0.0495 (10)
C2	0.4856 (4)	0.6531 (3)	0.16317 (13)	0.0474 (9)
H2	0.5637	0.6741	0.1431	0.057*

C31	0.6617 (5)	1.1336 (3)	0.11786 (15)	0.0604 (11)
H31	0.5979	1.1910	0.1086	0.072*
C24	1.0629 (4)	1.0686 (3)	0.07684 (14)	0.0545 (10)
C30	0.6268 (4)	1.0250 (3)	0.10591 (14)	0.0523 (10)
C10	0.5332 (4)	0.3950 (3)	0.19276 (13)	0.0463 (9)
C12	0.2648 (5)	0.3616 (3)	0.19911 (15)	0.0576 (11)
H12	0.1831	0.3380	0.2172	0.069*
C18	0.6230 (4)	0.4419 (3)	0.06822 (12)	0.0457 (9)
H18A	0.5580	0.5049	0.0615	0.055*
H18B	0.5770	0.3757	0.0548	0.055*
C26	0.8660 (5)	1.1451 (3)	0.02910 (14)	0.0617(11)
H26	0.8225	1.2067	0.0146	0.074*
C25	0.9965 (5)	1.1587 (3)	0.05427 (15)	0.0631 (12)
H25	1.0411	1.2286	0.0563	0.076*
C23	1.0121 (4)	0.9619 (3)	0.06396 (13)	0.0447 (9)
H23	1.0669	0.8993	0.0728	0.054*
C4	0.3970 (5)	0.6113 (3)	0.23964 (14)	0.0573 (11)
H4	0.4145	0.6054	0.2720	0.069*
C34	1.0530 (5)	1.1017 (4)	0.16609 (16)	0.0777 (13)
H34A	1.0907	1.0575	0.1923	0.093*
H34B	1.0607	1.1794	0.1750	0.093*
С9	0.6714 (5)	0.4413 (3)	0.21679 (14)	0.0637 (11)
H9A	0.7605	0.4190	0.1992	0.076*
H9B	0.6792	0.4098	0.2483	0.076*
C28	0.6283 (5)	1.0321 (3)	0.01627 (15)	0.0649 (12)
H28A	0.6112	0.9766	-0.0081	0.078*
H28B	0.5893	1.1024	0.0047	0.078*
C17	0.0757 (4)	0.5687 (3)	0.15545 (15)	0.0569 (10)
H17A	0.0389	0.6144	0.1296	0.068*
H17B	-0.0007	0.5688	0.1801	0.068*
C35	1.1557 (4)	1.0805 (4)	0.12142 (17)	0.0720 (13)
H35A	1.2257	1.1420	0.1178	0.086*
H35B	1.2144	1.0132	0.1263	0.086*
C8	0.6679 (5)	0.5712 (4)	0.22061 (18)	0.0763 (13)
H8A	0.6958	0.5927	0.2525	0.092*
H8B	0.7426	0.6021	0.1992	0.092*
C11	0.4078 (5)	0.3627 (3)	0.21874 (14)	0.0540 (10)
H11	0.4202	0.3413	0.2501	0.065*
C29	0.5392 (5)	0.9983 (4)	0.06158 (16)	0.0708 (12)
H29A	0.4434	1.0376	0.0622	0.085*
H29B	0.5179	0.9192	0.0606	0.085*
C16	0.0974 (4)	0.4463 (3)	0.13707 (16)	0.0604 (11)
H16A	0.0138	0.4011	0.1481	0.073*
H16B	0.0948	0.4465	0.1027	0.073*
		_		
4 1. 1		¥ / \		

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}

C36	0.067 (3)	0.041 (2)	0.035 (2)	0.0044 (19)	0.0096 (19)	-0.0025 (16)
C37	0.061 (3)	0.045 (2)	0.045 (2)	-0.008 (2)	0.015 (2)	-0.0008 (18)
Br1	0.0764 (3)	0.0724 (3)	0.0503 (2)	0.0140 (2)	0.0005 (2)	0.0209 (2)
Br2	0.1185 (4)	0.0657 (3)	0.0495 (2)	0.0250 (3)	-0.0064 (2)	0.0065 (2)
O3	0.0626 (15)	0.0360 (14)	0.0469 (14)	0.0062 (13)	-0.0120 (12)	-0.0028 (11)
O2	0.0512 (15)	0.0357 (13)	0.0518 (15)	0.0001 (11)	-0.0107 (11)	0.0038 (11)
01	0.0444 (15)	0.0576 (16)	0.0408 (15)	0.0075 (12)	-0.0015 (11)	0.0014 (12)
C20	0.050 (2)	0.041 (2)	0.047 (2)	0.0013 (18)	-0.0043 (17)	0.0023 (17)
C32	0.093 (3)	0.041 (2)	0.048 (2)	0.003 (3)	0.020 (2)	-0.0084 (19)
C1	0.057 (3)	0.0297 (19)	0.046 (2)	0.0067 (17)	0.0024 (18)	-0.0007 (16)
C22	0.062 (2)	0.032 (2)	0.0288 (19)	-0.0007 (17)	0.0063 (17)	-0.0032 (15)
C19	0.051 (2)	0.043 (2)	0.051 (2)	0.0000 (17)	0.0003 (18)	-0.0058 (17)
C21	0.055 (2)	0.036 (2)	0.043 (2)	0.0076 (17)	-0.0055 (18)	-0.0001 (16)
C5	0.064 (3)	0.053 (2)	0.042 (2)	0.0063 (18)	0.0116 (19)	-0.0043 (18)
C6	0.041 (2)	0.0379 (19)	0.051 (2)	0.0099 (16)	0.0042 (19)	-0.0009 (16)
C13	0.044 (2)	0.037 (2)	0.059 (3)	-0.0099 (16)	0.0070 (19)	-0.0029 (18)
C27	0.082 (3)	0.032 (2)	0.034 (2)	0.007 (2)	0.005 (2)	0.0003 (15)
C33	0.064 (3)	0.055 (3)	0.036 (2)	-0.002 (2)	0.0006 (18)	-0.0110 (17)
C14	0.053 (2)	0.030 (2)	0.048 (2)	-0.0042 (16)	-0.0032 (19)	-0.0041 (16)
C15	0.043 (2)	0.0244 (18)	0.046 (2)	0.0044 (15)	0.0017 (17)	0.0036 (15)
C3	0.048 (3)	0.043 (2)	0.057 (3)	-0.0039 (17)	-0.011 (2)	-0.0122 (17)
C2	0.046 (2)	0.040 (2)	0.056 (2)	-0.0076 (17)	0.0028 (18)	-0.0023 (18)
C31	0.073 (3)	0.054 (3)	0.054 (3)	0.023 (2)	0.012 (2)	-0.003 (2)
C24	0.052 (2)	0.051 (2)	0.060 (3)	-0.0082 (19)	0.018 (2)	-0.008 (2)
C30	0.050 (2)	0.051 (3)	0.056 (3)	0.0055 (19)	0.0150 (19)	-0.005 (2)
C10	0.054 (2)	0.0371 (19)	0.048 (2)	0.0125 (17)	-0.004 (2)	0.0043 (16)
C12	0.064 (3)	0.044 (2)	0.065 (3)	-0.0105 (19)	0.019 (2)	0.003 (2)
C18	0.046 (2)	0.047 (2)	0.044 (2)	-0.0029 (17)	-0.0041 (17)	-0.0017 (17)
C26	0.101 (4)	0.043 (3)	0.041 (2)	0.002 (2)	0.011 (2)	0.0051 (19)
C25	0.090 (3)	0.034 (2)	0.066 (3)	-0.019 (2)	0.031 (2)	-0.002 (2)
C23	0.048 (2)	0.040 (2)	0.046 (2)	0.0025 (16)	0.0140 (18)	-0.0039 (16)
C4	0.075 (3)	0.056 (3)	0.041 (2)	0.005 (2)	-0.008 (2)	-0.0141 (18)
C34	0.087 (3)	0.076 (3)	0.070 (3)	-0.012 (3)	-0.012 (3)	-0.023 (2)
C9	0.067 (3)	0.078 (3)	0.046 (2)	0.023 (2)	-0.015 (2)	0.004 (2)
C28	0.081 (3)	0.052 (3)	0.062 (3)	0.019 (2)	-0.023 (2)	0.001 (2)
C17	0.039 (2)	0.066 (3)	0.066 (3)	0.0039 (19)	0.0009 (19)	0.000 (2)
C35	0.052 (3)	0.072 (3)	0.091 (4)	-0.011 (2)	-0.001 (2)	-0.023 (3)
C8	0.055 (3)	0.092 (4)	0.082 (3)	-0.009 (3)	-0.028 (2)	-0.007 (3)
C11	0.080 (3)	0.036 (2)	0.046 (2)	0.007 (2)	0.003 (2)	0.0136 (17)
C29	0.057 (3)	0.075 (3)	0.080 (3)	0.015 (2)	-0.011 (2)	-0.010 (2)
C16	0.043 (2)	0.063 (3)	0.075 (3)	-0.015 (2)	0.000 (2)	-0.005 (2)
Geometric param	neters (Å, °)					
C36—C33		1.380 (5)	C3—C2		1.388	(5)

0.50-0.55	1.580 (5)	C3-C2	1.300 (3)
C36—C37	1.380 (5)	C3—C8	1.492 (5)
C36—Br2	1.903 (4)	С2—Н2	0.9300
C37—C30	1.384 (5)	C31—C30	1.383 (5)
С37—Н37	0.9300	С31—Н31	0.9300

Br1—C1	1.905 (3)	C24—C25	1.387 (6)
O3—C22	1.374 (4)	C24—C23	1.407 (5)
O3—C21	1.424 (4)	C24—C35	1.510 (6)
O2—C20	1.405 (4)	C30—C29	1.507 (6)
O2—C19	1.418 (4)	C10-C11	1.386 (5)
O1—C15	1.385 (4)	С10—С9	1.506 (5)
O1—C18	1.426 (4)	C12—C11	1.381 (6)
C20—C21	1.497 (5)	C12—H12	0.9300
C20—H20A	0.9700	C18—H18A	0.9700
C20—H20B	0.9700	C18—H18B	0.9700
C32—C31	1.382 (6)	C26—C25	1.366 (6)
C32—C33	1.390 (6)	С26—Н26	0.9300
С32—Н32	0.9300	С25—Н25	0.9300
C1—C6	1.375 (5)	С23—Н23	0.9300
C1—C2	1.387 (5)	C4—H4	0.9300
C22—C23	1.370 (5)	C34—C35	1.576 (6)
C22—C27	1.397 (5)	C34—H34A	0.9700
C19—C18	1.490 (5)	C34—H34B	0.9700
C19—H19A	0.9700	С9—С8	1.565 (6)
C19—H19B	0.9700	С9—Н9А	0.9700
C21—H21A	0.9700	С9—Н9В	0.9700
C21—H21B	0.9700	C28—C29	1.557 (6)
C5—C6	1.386 (5)	C28—H28A	0.9700
C5—C4	1.387 (5)	C28—H28B	0.9700
С5—Н5	0.9300	C17—C16	1.572 (5)
C6—C17	1.509 (5)	С17—Н17А	0.9700
C13—C12	1.372 (5)	С17—Н17В	0.9700
C13—C14	1.381 (5)	С35—Н35А	0.9700
C13—C16	1.495 (5)	С35—Н35В	0.9700
C27—C26	1.373 (5)	C8—H8A	0.9700
C27—C28	1.517 (6)	C8—H8B	0.9700
C33—C34	1.510 (6)	C11—H11	0.9300
C14—C15	1.379 (5)	С29—Н29А	0.9700
C14—H14	0.9300	С29—Н29В	0.9700
C15—C10	1.391 (5)	C16—H16A	0.9700
C3—C4	1.372 (5)	C16—H16B	0.9700
C33—C36—C37	121.9 (3)	C15—C10—C9	121.3 (3)
C33—C36—Br2	119.4 (3)	C13—C12—C11	120.6 (3)
C37—C36—Br2	118.2 (3)	C13—C12—H12	119.7
C36—C37—C30	120.3 (3)	С11—С12—Н12	119.7
С36—С37—Н37	119.9	O1—C18—C19	108.3 (3)
С30—С37—Н37	119.9	O1—C18—H18A	110.0
C22—O3—C21	118.3 (3)	C19—C18—H18A	110.0
C20—O2—C19	115.0 (3)	O1—C18—H18B	110.0
C15—O1—C18	117.2 (3)	C19—C18—H18B	110.0
O2—C20—C21	106.4 (3)	H18A—C18—H18B	108.4
O2—C20—H20A	110.5	C25—C26—C27	122.1 (4)
C21—C20—H20A	110.5	C25—C26—H26	118.9
O2—C20—H20B	110.5	C27—C26—H26	118.9

C21—C20—H20B	110.5	C26—C25—C24	120.3 (4)
H20A-C20-H20B	108.6	С26—С25—Н25	119.9
C31—C32—C33	121.4 (4)	C24—C25—H25	119.9
С31—С32—Н32	119.3	C22—C23—C24	119.8 (4)
С33—С32—Н32	119.3	С22—С23—Н23	120.1
C6—C1—C2	122.2 (3)	С24—С23—Н23	120.1
C6—C1—Br1	119.8 (3)	C3—C4—C5	120.9 (4)
C2—C1—Br1	117.1 (3)	C3—C4—H4	119.6
C23—C22—O3	123.4 (3)	C5—C4—H4	119.6
C23—C22—C27	121.3 (3)	C33—C34—C35	113.5 (3)
O3—C22—C27	114.6 (3)	С33—С34—Н34А	108.9
O2-C19-C18	114.2 (3)	С35—С34—Н34А	108.9
O2-C19-H19A	108.7	C33—C34—H34B	108.9
С18—С19—Н19А	108.7	С35—С34—Н34В	108.9
O2-C19-H19B	108.7	H34A—C34—H34B	107.7
C18—C19—H19B	108.7	C10—C9—C8	112.5 (3)
H19A—C19—H19B	107.6	С10—С9—Н9А	109.1
O3—C21—C20	107.0 (3)	С8—С9—Н9А	109.1
O3—C21—H21A	110.3	С10—С9—Н9В	109.1
C20-C21-H21A	110.3	С8—С9—Н9В	109.1
O3—C21—H21B	110.3	Н9А—С9—Н9В	107.8
C20—C21—H21B	110.3	C27—C28—C29	113.2 (3)
H21A—C21—H21B	108.6	C27—C28—H28A	108.9
C6—C5—C4	121.5 (4)	C29—C28—H28A	108.9
С6—С5—Н5	119.3	C27—C28—H28B	108.9
С4—С5—Н5	119.3	C29—C28—H28B	108.9
C1—C6—C5	115.2 (3)	H28A—C28—H28B	107.7
C1—C6—C17	124.0 (3)	C6—C17—C16	113.6 (3)
C5—C6—C17	119.4 (3)	С6—С17—Н17А	108.8
C12—C13—C14	117.2 (4)	С16—С17—Н17А	108.8
C12-C13-C16	122.2 (4)	С6—С17—Н17В	108.8
C14—C13—C16	118.8 (3)	С16—С17—Н17В	108.8
C26—C27—C22	116.5 (4)	H17A—C17—H17B	107.7
C26—C27—C28	122.1 (4)	C24—C35—C34	111.6 (3)
C22—C27—C28	119.9 (3)	С24—С35—Н35А	109.3
C36—C33—C32	115.5 (4)	С34—С35—Н35А	109.3
C36—C33—C34	124.6 (4)	С24—С35—Н35В	109.3
C32—C33—C34	118.8 (4)	С34—С35—Н35В	109.3
C15-C14-C13	121.1 (3)	H35A—C35—H35B	108.0
C15-C14-H14	119.4	C3—C8—C9	113.2 (3)
C13—C14—H14	119.4	С3—С8—Н8А	108.9
C14—C15—O1	123.1 (3)	С9—С8—Н8А	108.9
C14—C15—C10	120.8 (3)	C3—C8—H8B	108.9
O1—C15—C10	115.6 (3)	С9—С8—Н8В	108.9
C4—C3—C2	116.9 (3)	H8A—C8—H8B	107.7
C4—C3—C8	121.9 (4)	C12—C11—C10	121.6 (4)
C2—C3—C8	119.7 (4)	C12—C11—H11	119.2
C1—C2—C3	120.0 (3)	C10—C11—H11	119.2
C1—C2—H2	120.0	C30—C29—C28	111.5 (3)

С3—С2—Н2	120.0	C30—C29—H29A	109.3
C32—C31—C30	120.4 (4)	C28—C29—H29A	109.3
С32—С31—Н31	119.8	С30—С29—Н29В	109.3
C30—C31—H31	119.8	C28—C29—H29B	109.3
C25—C24—C23	117.2 (4)	H29A—C29—H29B	108.0
C25—C24—C35	122.7 (4)	C13—C16—C17	113.0 (3)
C23—C24—C35	118.4 (4)	C13—C16—H16A	109.0
C31—C30—C37	116.9 (4)	C17—C16—H16A	109.0
C31—C30—C29	121.2 (4)	C13—C16—H16B	109.0
C37—C30—C29	120.3 (4)	C17—C16—H16B	109.0
C11—C10—C15	116.1 (3)	H16A—C16—H16B	107.8
C11—C10—C9	121.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
C17—H17A···O2 ⁱ	0.97	2.71	3.412 (5)	130
Symmetry codes: (i) $x-1$, y , z .				

